F

N

Y=  NAVAL POSTGRADUATE SCHOOL
ﬂ Monterey, California

N=

=

o=

<

|
THESIS
ELECTRON BEAMS
AT GEOSYNCHRONOUS ORBIT

, by
! Raymond C. Gaw
\ September, 1993

Thesis Advisor: R. C. Olsen

Approved for public release; distribution is unlimited.

94-04512

A DTI0 QuALLCY rsPEcIaD 5

94 2 09 047




Best
Available

Copy




Unclassified _______

Security Classification of this page
REPORT DOCUMENTATION PAGE
1a Report Security Classification: Unclassified 1b Restrictive Markings
2a Security Classification Authority 3 Distribution/Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Orgenization Report Number(s) S Monitoring Organization Report Number(s) |
6a Name of Performing Organization 6b Office Symbol 78 Name of Monitoring Organization
Naval Postgraduate School (if applicable) 3A Naval Postgraduate School
6c Address (city, state, and ZIP code) To Address (city, state, and ZIP code)
Monterey CA 93943-5000 Monterey CA 93943-5000
8a Name of Funding/Sponsoring Organization 6b Office Symbol 9 Procurement Instrument ldentification Number
(if applicable)
Address (city, state, and ZIP code) 10 Source of Funding Numbers
Program Elemenst No  |Project No |Task No | Work Unit Accession No
11 Title finclude secunity classification) ELECTRON BEAMS AT GEOSYNCHRONOUS ORBIT
12 Personal Author(s) Gaw, Raymond C.
13a. Type of Report 13b Time Covered 14 Date of Report (year, month, day) 15 Page Count
Master's Thesis From To September, 1993 102 |
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or position F
of the Department of Defense or the U.S. Government.
17 Coeati Codes 18 Subject Terms (continue on reverse {f necessary and identify by block number)
Group Subgroup Plasmasphere, Plasmapause, Plasmasheet, Ion distribbution, electron distribution,

Geosynchronous orbit, Maxwelliar. distribution, Magnetospheric Plasma Analyzer

19 Abetract (continue on reverse {f necessary and identify by block number)

This thesis surveys electron and ion measurements collected by the geosynchronous satellite 1989-046. In particular, this survey focuses on a phenomenom
Hknown as "electron beams®, which are attributed to the sudden acceleration of clecirons along the earth’s magnetic field lines. Observations over a twelve day|
Bperiod reveal eleciron beam occurrences during the first few minutes of hot plasma injection associsted with a magnetospheric substorm. Analysis of
f distribution functions show these beams have a characteristic peak. These distributions can be approximstely fitted as Maxwellians, providing a means of
dcharacterizing the temperature, density, and potential drop associated with the beam. . iots of the differential flux also show a general diffusion of the beam
into neighboring pitch angles. Theories on the source of the scceleration and diffusion are presented.

§20 Distribution/Availability of Abstract 21 Abstract Security Classification

| _X_ unclassified/unlimited __ same as report __DTIC users  |Unclassified
§ 220 Name of Responsible Individual 23b Telephone (include Area Code) 22c Office Symbol
IR. C. Olsen 408-656-2019 Ph/Os

83 APR edition may be used until exhausted 7 i assification of this 7
All other editions are obsolete Unclassified

DD FORM 1473,84 MAR




Approved for public release; distribution is unlimited.

Electron Beams
at Geosynchronous Orbit

by
Raymond C. Gaw
Licutenant, United States Navy

B.S.E., Central Missouri State University

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL

September, 1993
Author: 2 v,./( C é s
Raymond C. Gaw

Approved by:

Rudolph Panholzerg Chairman
Space Systems Academic Group




e

ABSTRACT

This thesis surveys electron and ion measurements
collected by the geosynchronous satellite 1989-046. In
particular, this survey focuses on a phenomenom known as
"electron beams", which are attributed to the sudden
acceleration of electrons along the earth’s magnetic field
lines. Observations over a twelve day period reveal electron
beam occurrences during the first few minutes of hot plasma
injection associated with a magnetospheric substorm. Analysis
of distribution functions show these beams have a
characteristic peak. The distributions can be approximately
fitted as Maxwellians, providing a means of characterizing the
temperature, density, and potential drop associated with the
beam. Plots of the differential flux also show a general
diffusion of the beam into neighboring pitch angles. Theories

on the source of the acceleration and diffusion are presented.
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I. INTRODUCTION

It is said that 99% of the universe is in the plasma
state. A spacecraft in orbit about the earth will likely
encounter several distinct plasma environments, each
distinguished by energy and density. Depending on the nature
of a spacecraft and its mission, it may be important to
monitor the plasma environment in which the vehicle and its
payload are immersed. These plasma environments have been the
subject of intense study by space physicists over the past 40
years, and much is now known about their origin and
interaction with earth’s magnetic field. This study, though,
is by no means complete, and many important questions remain
unansvered.

Previous plasma environment studies have reported an
intense beam of electrons being accelerated along the local
magnetic field 1line. These electron beams are often
associated with plasma injection events (frequently called
magnetospheric substorms). The origin of these particles, the
acceleration method, and the diffusion process are still
questions under debate.

An intense flux of electrons along the magnetic field line
was first reported by Hones et al (1971) using data collected
by the Vela satellites. He termed these field aligned fluxes

‘beams’, but stated these fluxes did not contain a secondary




peak in their distribution function. Electron beams, with
local peaks in their distribution function, were subsequently
detected by McIlwain (1975) wusing the University of
California, San Diego auroral particles experiment on the
satellite ATS-6. McIlwain showed these narrow field-aligned
pitch angle distributions found at geosynchronous orbit were
of recent ionospheric origin. Parks et al (1977) and Lin et
al (1979) extended these studies of ATS-6 data. The
instrument onboard ATS~6 did not have the capability of
measuring beams in both directions, and thus could not
distinguish whether the beams were bi-directional or uni-
directional. Further studies have reported the existence of
counterstreaming beams, which are beams propagating in both
directions along the field lines (Hada et al, 1981, Moore and
Arnoldy, 1982, Klumpar et al, 1988). These latter studies,
howvever, were conducted with instruments which could not
resolve the energy distribution well enough to determine if
the distributions were beam-like in energy. There remained a
need for measurements which provided full pitch angle and
energy distributions.

Whatever the method of creating and diffusing these beans,
it is undoubtedly true they are directly involved in the
optical auroral processes observed in the north and south
polar regions. Eather el al (1976) has reported that the
auroral precipitation patterns in the polar regions share the

same characteristic shape and orientation of the plasma




injection boundary. Mende and Shelley (1976) determined that
the presence of hot plasma (plasmasheet electrons) was a
necessary but not sufficient condition for the occurrence of
conjugate auroras.

The data studied in this research paper was collected by
the Magnetospheric Plasma Analyzer (MPA), a Los Alamos
National Laboratory instrument. This instrument was mounted
on spacecraft 1989-046, which was subsequently launched into
geosynchronous orbit (6.6 earth radii). Particle count data
from the MPA has an energy spectrum of 1 to 40000 eV in three
dimensions for both electrons and ions. The sections that
follow further describe the MPA as well as the nominal

geosynchronous environment.




II. BACKGROUND

A. NISBTORY

Intense fluxes of electrons along the local magnetic field
line were first reported by Hones et al (1971) using data
collected by the Vela satellites in the plasmasheet. He
suggested these electrons were associated with the auroral
phenomenon in the polar regions. He showed these fluxes had
a narrow angular distribution centered along the field line,
and termed them ‘beams’, but he did not assert that they were
beam-like in energy, which a secondary peak in the
distribution function would reflect.

McIlwain (1975) also reported intense fluxes of electrons
peaked at small pitch angles from data collected by ATS-6
(Figure 1). He plotted the distribution function versus
energy, and reported a secondary peak (Figure 2). He named
this phenomenon an electron beam, and reported this beam was
travelling along the local magnetic field line toward the
northern auroral zone. McIlwain concluded these beams
originated in either the ionosphere or the magnetosheath, and
were produced by either a potential drop or by heating of the
ionospheric ambient plasma.

Lin et al (1979) continued to analyze data from ATS-6, and

suggested the topside ionosphere as the likely source for the




electron beams. This report also suggested beam particles are
scattered to large pitch angles by wave-particle interaction.
Further analysis of the ATS-6 data was conducted by Parks et
al (1979) who also reported a beam along the local magnetic
field line with a secondary distribution peak at approximately
1.5 keV. This report concluded that both the ionosphere and
the plasmasheet populations are most likely involved as the
source region, and that variations in the distribution
function only occurred during the first few minutes of a
plasma injection event. Unfortunately, the detector aboard
ATS-6 was limited to looking in a single hemisphere, and thus
could not detect if the beams were propagating in both
directions along the field line.

Hada et al (1981) studied data from Imp 6, and reported
field-aligned electron distributions which were Dbi-
directional, and possibly corresponded to beams reported by
McIlwain (1975), Parks et al (1977), and Lin et al (1979).
These beams occurred in the plasmasheet and had an energy
range of several hundred eV to several keV. To explain this
phenomenon, he suggested a Fermi-type acceleration where an
electric field is induced parallel to the magnetic field.

Klumpar et al (1988) and Klumpar (1989) also reported
counterstreaming electrons from data collected by the
AMPTE/CCE satellite. These electrons were highly collimated
along the local magnetic field line, and were interpreted as

having recently emerged from the auroral ionosphere as




secondary and backscattered primary electrons (Figure 3). He
suggested that hot plasmasheet electrons are accelerated
downward into the source region by a parallel electric field.
This process creates a population of low energy secondary and
backscattered electrons which, if the potential barrier is
reduced in magnitude or moves to an adjoining flux tube, would
travel along the field line toward the conjugate atmosphere.
This intense flux would mirror in the opposite hemisphere, and
would be seen at the equatorial plane as highly field aligned
counterstreaming electrons. Klumpar, however, did not report
that these counterstreaming beams had a secondary peak in
their distribution function associated with a beam. Further

study was needed to bring these ideas together.

B. THE NOMINAL GEOSYNCHRONOUS ENVIRONMENT

A spacecraft in geosynchronous orbit will likely encounter
several distinct plasma environments, therefore it is
important to briefly describe these characteristic regions of
the terrestrial magnetosphere. The earth’s magnetic field
creates a semipermeable barrier to the solar wind produced by
the sun. This barrier is called the magnetopause and creates
a cavity around the earth in which various particle
populations exist. The magnetosphere, depicted in Figure 4,
is the region of space in which the geomagnetic field plays a
dominant role. The position of the boundary, as well as the

position of the particle populations within the magnetosphere,




are highly variable, depending upon the level of activity of
the sun. As the activity increases, the boundary and particle
populations move closer to the earth.

In this survey, the spacecraft encounters three different
plasma regions: the plasmasphere, plasmapause, and the
plasmasheet. The plasmasphere is a region of low energy,
dense plasma extending from the top of the ionosphere.
Particles measured in this region have typical energies < 20
eV and densities of approximately 10-100 cm®. The region
separating the plasmasphere from the plasmasheet is called the
plasmapause, and densities within this region will typically
drop to 1 cm? or less. The distance of the plasmapause from
the center of the earth varies according to the level of
magnetic activity. McComas (1992) found that the plasmapause
moves across geosynchronous orbit in short periods of time, as
will be readily seen in this survey.

The plasmasheet is a region of high energy, less dense
plasma. Particle energy is on the order of 0.1 keV to 10 keV,
and densities are typically 1 cm®. The primary focus of this
research is on the inner boundary of the plasmasheet where

electron beams are frequently observed.

C. THE DISTRIBUTION FUNCTION
The distribution function, or phase space density, is the
probability of measuring a particle at a position r, with a

velocity v, at time t. It is expressed as




f=f{xr,v, t)

One common type of distribution function is called a

Maxwellian, or Maxwell-Boltzmann distribution, where

B

3
= RS P -
f=n(r, t) (5==) °e

The symbol n(r,t) is the number density, and is given by

integrating over all possible velocities:
n(r,c)=ffff(r,v.t)d3v

The symbol m is the mass of the particle (in this case
electrons), k is the conversion factor appropriate for the
units of T, in this case Joules/eV, T is the temperature in
eV, and E is the energy.

When a Maxwellian distribution function is plotted versus
energy on a semi-~log scale, it forms a straight line in which
the slope is inversely proportional to the temperature, and
the y-intercept is the particle density. Figure 5 shows a
plot of the distribution function versus energy of particles
in the plasmasphere just prior to an injection in the dusk
region on a semi-log scale. The distribution function is
Maxwellian over short energy ranges. This figure shows
particles that are characterized by a temperature of 80 eV and
a density of 4 cm®. Lin et al (1979) has shown that plasma at

geosynchronous altitude can be characterized by a single




Maxwellian or a combination of two Maxwellians. When electron
beams are present, the distribution function will contain a
secondary peak, or local maximum, as seen in Figure 6. The
secondary peak seen in the Figure is nominally due to
acceleration of the electrons along the magnetic field line by
a parallel electric field. The center of this peak indicates
the potential difference between the source region and the
detector. Maxwellian approximations, seen as the solid line
in both Figures, will be least-squares fitted to the plotted
distribution function in chapter IV to analyze electron beam

observations.

D. THE MAGNETOSPHERIC PLASMA ANALYZER

Presently, three spacecraft with the international
designators 1989-046, 1990-095, and 1991-080 utilize the
magnetospheric plasma analyzer (MPA). These spacecraft are
currently in geosynchronous orbit sending particle data to Los
Alamos National Laboratory (Los Alamos). A detailed
description of the MPA is presented by Bame et al (1993). The
MPA was designed to measure three dimensional electron and ion
distributions in an energy range of 1 eV/q to 40 keV/qg. As
seen in Figure 7, the MPA is composed of a single
electrostatic analyzer (ESA) coupled to an array of six
channel electron multipliers (CEM). The ESA is composed of a
set of curved plates bent at a constant 60 degree angle, and

is independent of the polar angle of entry. The particles are




then directed and post accelerated into the CEM array. The
six CEMs provide simultaneous measurements over different
polar angle field of view (FOV) look directions centered at
+11.5°, 134.5°, and 157.5° with respect to the spacecraft spin
equator. The top plot of Figure 8 illustrates the calibrated
relative response between CEM’s. The number three and four
channels, at $11.5° have the highest relative transmission
through the ESA section. The bottom plot of Figure 8
illustrates the expected FOV coverage for each CEM on a unit
sphere. The spacecraft spin allows the MPA instrument to view
over 92% of the unit sphere, allowing for excellent coverage
of the surrounding plasma environment. For this report, only
data collected by sensors three and four were surveyed as they
had the highest probability of being aligned along the
magnetic field line due to the alignment of the spacecraft’s
spin axis.

The MPA produces five different types of data sets. The
two data sets utilized in this report are the three
dimensional observations of electrons and ions. Each of these
data sets consist of 24 uniformly spaced exponential sweeps
from the top energy level to the bottom. Each of these sweeps
collects counts in 40 nine-millisecond counting bins. Thus,
the data set for the three dimensional observation of

electrons would contain six 24 by 40 matrices of particle

10




counts, one for each CEM. Each data set takes 10.15 seconds
for a complete sweep of 365.5°.

Pitch angle information in previous plasma studies was
obtained by onboard magnetometers. Satellite 1989-046 does
not have an onboard magnetometer. The satellite is spin
stabilized with its spin axis pointed toward the center of the
earth. Its orbit is always within 10° latitude of the
equatorial plane. The roll angle of this spacecraft is
defined as the angle of rotation completed since the MPA
aperture had passed a northward facing orientation. The
earth’s magnetic field lines are approximately perpendicular
to the equatorial plane at geosynchronous altitudes, and thus
parallel to the local horizontal. At a roll angle of 0°, the
MPA aperture is approximately viewing along the magnetic field
line in the northward direction. In this survey, the roll
angle of the spacecraft will be used as pitch angle. A pitch
angle of approximately 0°, 180°, and 360° will be measuring
electrons along the magnetic field line. Equatorial trapped

electrons will be measured at approximately 90° and 270°.

11




III. OBSBSERVATIONS

Eleven days of data collected by the MPA wvere observed as
electron spectrograms for the purpose of viewing electron
beams. Each day contained approximately 470 observations.
April 12 through April 21, 1990 were chosen due to a moderate
magnetic substorm observed during this period. December 10,
1990 was chosen because the spacecraft did not encounter the
plasmasheet during the 24 hour period, indicating a
magnetically quiet day. April 5, 1993 was chosen to observe
more recent data collected by satellite 1990-095 during a day
of moderate magnetic activity. Specific days and hours were
then chosen for a case study that will be presented in the

next chapter.

A. FORMAT OF DATA PRESENTATION

Figures 9 and 10 show representative spectrograms of both
electron and ion fluxes on April 14, 1990. These data were
collected by sensors 3 and 4 of the MPA as discussed in
Chapter II. These spectrograms were created by integrating
counts collected by sensors 3 and 4 in the field aligned and
perpendicular directions respectively. Particle flux levels
are denoted by a log,, grey scale shown at the bottom of each

Figure. The vertical scale represents the 40 energy channels,
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measured in eV, through which the instrument swept during each
time interval.

The time scale is labeled in universal time (UT). To
convert to local time, add 13:00 hours to the universal time
for the April days and 13:20 hours for December 10. Each
three dimensional measurement, or snapshot takes approximately
10 seconds. Unfortunately, these measurement are not the
primary mission of this satellite, and the time resolution
suffers considerably. The mean time between collections was
3 minutes for the full 3-D electron mode, with larger time
intervals when the satellite’s primary mission preempted the
telenmetry channel. This time resolution had a detrimental
effect on this survey of electron beams, which will be
explained in a subsequent chapter.

The low energy ions seen between 0100 and 0400 UT indicate
the spacecraft is within the plasmasphere. A plasma injection
event is seen in the electron spectrogram at approximately
0440 UT. This indicates the spacecraft is being enveloped by
the plasmasheet. A second plasma injection event of higher
energy electrons is seen at approximately 0630 UT. Data from
this event were shown in Figures 5 and 6. The faded vertical
strip at 1100 UT indicates the spacecraft is entering eclipse.
The low energy electrons seen between 0730 and 1600 UT are
those emitted by the spacecraft, and then returned to the
spacecraft by the potential barrier. The high energy

electrons seen in Figures 9 and 10 after about 0630 UT
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indicate both field aligned and equatorially trapped electrons
throughout the rest of the day. This research will focus on
electrons with an energy greater than about 50 eV. Figure 11
is a plot of the full energy~-angle matrix at the injection at
0640 UT. The detector number, the date, and time are listed
at the top of the plot. A differential energy flux versus
energy and pitch angle plot is in the lower left corner of the
Figure. This plot also shows the differential energy flux
measured on a grey scale. The log,, grey scale is shown just
to the right of the plot, and can be adjusted to highlight
the presence of electron beams. As stated earlier, field
aligned electrons will be seen at angles of 0°, 180°, and 360°.
Equatorially trapped electrons will be seen at 90° and 270°.
An electron beam is visible at a pitch angle of 180° and an
energy of 1 XeV. A characteristic sun pulse can be seen in
the lower right hand corner of the plot.

The top left hand corner of the Figure is a plot of
differential energy flux versus parallel velocity and
perpendicular velocity. The parallel velocity will be along
the magnetic field line. The grey scale representation of
flux is the same as that of the energy versus pitch angle plot
in the lower left hand corner. A plot of the distribution
function versus energy and pitch angle is seen at the bottom
right hand corner of the Figure. The log,, grey scale is shown
to the right of the plot. This scale can also be adjusted to

14




highlight features within the plot. The top right hand corner
shows the same distribution function plotted versus parallel
and perpendicular velocity. The grey scale representation of
the distribution function is the same as that in the lower
right hand plot. Data collected at specific pitch angles will

be shown in a subsequent chapter.

B. MAGNETIC ACTIVITY

Figure 12 illustrates the level of magnetic activity
during the period of April 12,1990 to April 21,1990. A storm
began on April 10, and slowly subsided over the next twelve
days. April 12 showed the highest level of magnetic activity
for the data observed in this survey, and as expected
displayed the highest frequency of electron beam occurrence.
December 10, 1990 was a magnetically quiet day, resulting in
the spacecraft remaining in the plasmasphere the entire day.
The magnetic activity for April 5, 1993 was comparable to
April 12, 1990, and displayed a similarly high level of

electron beam occurrence.

C. QUIET PERIODS

Electron beams were seen on most days, with the exceptions
in this study on April 16, April 21 and December 10. April 16
and April 21 are days of low magnetic activity, resulting in
relatively mild injection events. The field aligned data for

these days are shown as spectrograms in Figures 13 and 14
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respectively. The conclusion that no beams occurred during
hot plasma injections on these days requires some strong
caveats. The minimum three minute time resolution between
detector sweeps may have played a substantial role in beam
detection. There are many cases in this survey of electron
beam distributions fading in less than six minutes. It is
quite possible that electron beams were formed at the plasma
injection events on 16 and 21 April, but were diffused before
the next sweep by the MPA. An increased time resolution
between sweeps is required to solve this question.

As stated previously, December 10 was a quiet day, and the
plasmasheet remained outside the orbit of the spacecraft. The
spectrogram for December 10 is shown in Figure 15. Electron
beams were not observed on this day, reinforcing the idea that
plasma injection from the plasmasheet is required for electron
beam development. Previous articles (Lin et al, 1979, Parks

et al, 1977) have shown similar observations.

D. ELECTRON BEAM DETECTION

Data collected by sensors 3 and 4 of the MPA revealed at
least one electron beam event for each of the remaining days
in this survey. A beam, again, is defined by a local maximum
in the distribution function, as illustrated in Figure 6.
Every beam detected here occurred within minutes after a
plasma injection, signifying a strong coupling between the two

events. The intermittent samples prevented determining if
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these two processes occur simultaneously. A single beam was
detected on April 13, April 19, and April 20. Each of these
beams diffused prior to the next detector sweep, indicating a
maximum lifetime of 6 minutes. Two beams were detected on
April 14, each associated with a different plasma injection
(see Figure 9). The first was at 0640 UT and the second was
at 1000 UT. The 0640 injection (Figure 11) produced the most
energetic beam in this survey. Figure 6 shows the
distribution versus energy plot of the data, with a large
secondary peak at 1900 eV. The accelerating potential was
estimated to be 1850 V, and was more than twice as large as
any other beam seen in this survey. A Maxwellian fit of this
distribution gave a temperature of 576 eV and a density of .27
cm?, Each beam faded before the next detector sweep,
indicating a maximum lifetime of 6 minutes.

The following day, April 15, 1990, was similar in
observations. The first beam detection was made at
approximately 0550, in conjunction with the first plasma
injection event of the day as illustrated in Figure 16. This
beam diffused after approximately 9 minutes. A second beam
was detected at 0857, and diffused within 6 minutes. Three
distinct beams were observed on April 17, 1990. Two of these
beams diffused within 6 minutes, while the third beam diffused
within 9 minutes.

17




April 5, 1993 was a magnetically active day, similar to
April 12, 1990. Figure 17 shows the field aligned data in
energy versus time format for April 5, 1993. The spacecraft
was within the plasmasheet until approximately 1000 UT (local
noon), and experienced numerous plasma injections from the
plasmasheet. The spacecraft then reentered the plasmasheet at
about 1600 UT (local dusk). At least 7 electron beams were
recorded with energies ranging from about 100 eV to 1 keV and
a maximum lifetime of about 20 minutes. The beam with the
highest energy is shown in Figure 18. The accelerating
potential was estimated to be 800 V. A Maxwellian fit of this
distribution gave a temperature of 593 eV and a density of
1.54 cm? at the source.

April 12 and 18 were magnetically active days, and
observations of electron beams were numerous. April 12,
April 18, and April 19 will be used for case studies in the
next chapter.

A total of approximately 30 electron beams were observed
in this survey, with an average lifetime of about 10 minutes.
The longest lifetime of a beam occurred on April 12 in which
the beam diffused after about 30 minutes. These lifetimes are
only rough approximations due to the three minute time lag
between detector sweeps, but are considered to Dbe
conservatively high. Mauk and McIlwain (1975) reported

electron beam lifetimes of hours, which may be explained by
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the difference in magnetic activity between 1975 and 1990.
Work by Mauk and McIlwain (1975) was conducted during a
relatively high magnetic activity period compared to the
interval presented in this survey.

A second interesting difference between these surveys is
in beam energy. MclIlwain (1975) and Parks et al (1979)
reported electron beam energies of a few keV. By contrast, of
the approximately 30 electron beams observed in this research,
only a few displayed an energy above 1 keV. Energies of the
remaining beams ranged from about 40 eV to 1 XkeV. These
observations are closer to those of Moore and Arnoldy (1982)
who reported counterstreaming electron beams of a few hundred
eV. The next chapter will present case studies of specific

beams found in this survey.
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IV. CASBE STUDIES

Three days have been selected from the survey for a more
detailed analysis. These three days were chosen for a range
of quiet to active magnetospheric conditions. A computer
program was developed to analyze electron distribution
functions in order to determine the temperature and density of

observed beams.

A. APRIL 19, 1990

Figure 19 is a spectrogram for the field aligned particle
distributions observed on April 19. A single plasma injection
event is seen at approximately 1040 UT. The evolution of a
beam is illustrated by the sequence of Figures which follows.
Figure 20 and 21 show the energy versus pitch angle plots
collected by detectors 3 and 4 respectively at the injection
boundary when the beam is most distinct. A high flux of
electrons is seen in Figure 20 at a pitch angle of 180° and an
energy of approximately 600 eV. Figure 21 also shows a high
flux of electrons at a pitch angle of 0° and an energy of
approximately 600 eV. These two ’beams’ are counterstreaming
in nature; their appearance in adjacent detectors is a result
of the offset between magnetic field direction and the north-

south axis. The velocity plots in both Figures also show a
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high flux of electrons peaked along the \{ axis. These are
the first indications that an electron beam may be present.

The distribution function plots in Figures 20 and 21 also
show an increased flux at 180° and 0° respectively. These
distribution functions were plotted versus energy at the
respective pitch angles, and least-squares fitted with
Maxwellian approximations. This is depicted in Figures 22 and
23. As these Figures show, the distribution functions are
nearly identical for detectors 3 and 4. This was the case
throughout the entire survey, indicating these beams are
nominally bi-directional. Therefore, data collected by
detector 3 will primarily be used in the remaining case
studies. It should be noted that data collected by both
detectors were surveyed for this project.

Figures 22 and 23 reveal the characteristic peak in the
distribution function indicating an acceleration of electrons
along the field line. The temperatures in both Figures were
determined from the slope of the fit from 500-3000 eV. This
fit assumes the distribution to be Maxwellian.

The density calculation has become inaccurate due to the
energy shift in the distribution function. An accelerating
potential term must be added to determine the correct particle

density of the beam. This correction is seen as:
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n=n,e #

where n, is the original density calculation as obtained from
a least squares fit to the distribution function. The term qg¢
is the accelerating potential of the electron beam. This
correction will be included in a subset of the Figures which
follow to determine the density. Figure 24 shows a log-linear
plot of the detector 3 data shown previously in Figure 22.
The density estimate has been corrected using the assumption
that the distribution is Maxwellian at its source.

The following four Figures show the distribution before
and after the beam measurement. Figure 25 is the distribution
versus energy plot on a log-log scale just prior to beam
occurrence. These data has been fitted with a Maxwellian
approximation to determine the temperature. Figure 26 shows
the data on a semi-log scale. Both plots are fitted from 100-
1000 eV, and show similar densities and temperatures prior to
beam development.

Six minutes after the beam is observed, it has diffused in
energy and pitch angle. Figures 27 and 28 show the
distribution function in the same formats as above. Figure 27
shows the distribution function and differential energy flux
versus energy about 6 minutes after the beam was detected. A
Maxwellian fit is again used. The characteristic peak in the

distribution function has practically disappeared, while the
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temperature over the same 500-3000 eV energy range has
increased to 860 eV. Figure 28 shows the same data on a semi-
log scale, and the density of 0.37 cm® is nearly one guarter
that observed in the beam. This indicated the beam had
diffused into the surrounding hot plasma. This was the only

beam seen on April 19.

B. APRIL 18, 1990

The second case study is from a more active day in the
observation period. The energy versus time spectrogram for
April 18 is shown in Figure 29. There are three distinct
plasma injection events at approximately 0400, 0840, and 1240
UT. This case study will concentrate on events occurring
during the second plasma injection, when an approximately 100
eV beam is found. Data are shown for 0843 to 0855 UT, which
is approximately 2200 local time.

Figure 30 is the energy versus pitch angle plots at 0843
UT from data collected by detector 3. A high flux of
electrons is clearly seen at a pitch angle of 180° and an
energy of about 300 eV. The velocity plot also shows an
increased flux of electrons being accelerated in the vy
direction. This is believed to be the beginning of an
electron beam formation. Figure 31 is the distribution versus
energy plot at a pitch angle of 180°. The characteristic peak

in the distribution function is not yet seen.
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Figure 32 shows the data in energy versus pitch angle
format three minutes later at 0846 UT. The flux of electrons
at 180° pitch angle appears to have increased in amplitude
with enhanced fluxes around 100 eV. Figure 33 shows the
distribution versus energy on a log-log scale at 180°. The
least-squares fit of a Maxwellian shows a small peak in the
distribution function at approximately 120 eV. There is also
a substantial depression in the distribution function at less
than 120 eV below what would be expected for a Maxwellian.
Figure 34 shows the same data on a semi-log scale. The fit
from 300-900 eV show the temperature to be about 126 eV. The
accelerating potential was estimated to be 100 V, giving a
source density of 9.34 cm?®.

Figure 35 presents the energy-angle distributions for the
next sweep at 0849 UT. The flux at 180° appears to have the
same characteristics as that seen at 0846 UT. Figure 36 shows
the field aligned data for this snapshot. The data are least-
squares fitted with a Maxwellian giving a temperature of 127
eV. Figure 37 shows that once the accelerating potential of
approximately 100 V is included, a density of 7.47 cm?
describes the beam. This temperature and density nearly match
the temperature and density seen at 0846.

Figure 38 shows the third consecutive beam measurement at
0852 UT. The beam flux at 180° pitch angle has decreased

substantially from that seen in the previous two sweeps,
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indicating a diffusion of the beam. Figure 39 shows the
distribution function and differential energy flux versus
energy along with Maxwellian fits. The tenmperature has
dropped to 81 eV, a decrease of about 50 eV from the previous
observations. Figure 40 shows the estimated accelerating
potential of 80 V, giving a density of 2.02 cm?®.

Figure 41 shows data collected during the next sweep at
0855 UT as the distribution has relaxed. The beam has
diffused in energy and pitch angle. The temperature from the
least-squares fit is 129 eV. Figure 42 shows the same data on
a semi-log scale, and displays the corrected density of 1.29
eV. It appears from this series of Figures that the electron
beams observed at approximately 100 eV are from a distribution
function which is largely constant in temperature and simply

accelerated through varying potential drops.

C. APRIL 12, 1990

April 12 was the most magnetically active day in this
survey, and the spacecraft encountered a number of plasma
injection events. Figure 43 is the energy versus time
spectrogram for April 12, 1990. The first plasma injection
was at approximately 0330 UT, and plasma injections continued
until about 1215 UT. This case study will focus on a plasma
injection at approximately 0520 UT, near local dusk (about

1800 local time).
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Data are shown in detail for an 8 minute interval in four
snapshots. Figure 44 shows the first segment, collected by
detector 3 at 0521 UT. The plot shows a concentration of flux
at pitch angles of 0° and 180° and at energies of about 50 eV.
The velocity plot shows a high flux along v, at both positive
and negative values. This clearly shows an acceleration in
both directions along the magnetic field 1line. This
counterstreaming is seen throughout the ‘injection events on
April 12.

Figures 45 and 46 show the field aligned data. The
distribution has been least-squares fitted with a Maxwellian
distribution, giving a temperature of 54 eV. A small hump
appears to be forming at an energy of about 20 eV. Figure 46
shows the data on a semi-log scale. The accelerating
potential was estimated to be 40 V giving a density of 13.5
cm?. It is believed this is the start of a beam development
for this injection event.

Figure 47 shows the next sweep at 0524 UT. A
concentration of flux is again seen at pitch angles of 0° and
180°. Counterstreaming continues to be observed. The
dimensions of the flux appear to be the same as that seen at
0521 UT. Figures 48 and 49 show the field aligned data in
line plot form. The data have been least-squares fitted with
a Maxwellian, giving a temperature of 34 eV. A peak has

formed in the distribution at an energy of about 50 eV.
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Figure 49 shows the data in semi-log form. An accelerating
potential of 50 V was estimated, giving a source density of 29
cm®. The distribution function again shows a substantial
depression in energies less than the local peak. This
depression suggests the possibility that electron beams are
due to the dropout of 1low energy electrons vice the
development of a secondary peak in the distribution function.

Figures 50 through 52 show data froa the next sweep by the
MPA at 0526 UT. The shape of the pitch angle distribution
appears to be the same as that seen in the previous sweep.
The velocity plot still shows counterstreaming electrons along
the magnetic field line. The line plot gives a temperature of
50 eV. The corrected source density is shown to be 17.65 cm’.

The conclusion of the sequence is shown in Figures 53-55
at 0529 UT. The data are not substantially different from
those taken in the previous three sweeps by the MPA. Figure
54 is the distribution versus energy plot on a log-log scale,
and again shows the peak characterizing an electron beam. The
Maxwellian fit gives a temperature of 52 eV. Figure 55 shows
the same data on a semi-log scale. The accelerating potential
was estimated to be 80 V, giving a density of 28 cm®. The
next sweep of the MPA was made at 0532 UT, and showed the beam
had diffused in pitch angle and energy. This diffusion

translates to a beam lifetime of approximately 11 minutes.
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V. DIsCuUssIOM

There are three primary questions that remain unanswered
with respect to electron beams. These questions are:

1. What is the origin of the particles in the beam?

2. What is the acceleration method?

3. How and where is the electron beam diffused?
This chapter will compare theories presented in previous

research to the observations made in this thesis.

A. ORIGIN OF BEAN PARTICLES

Many previous research papers attempted to explain the
origin of particles in electron beams. Parks et al (1977)
deduced the increased electron flux seen along the magnetic
field line originated in the upper atmosphere (ionosphere).
Lin et al (1979) reported that the beams were confined to
pitch angles of approximately 10-30° at the equatorial plane,
and suggested that the ionosphere was the likely source of the
particles. Parks et al (1979) reported that electron beams
are characteristic of ionospheric potentials, but that the
particles are probably of two sources; the ionosphere and the
plasmasheet. McIlwain (1975) also argued that the
distribution functions of these beams indicate that at least
some of the particles in the beam originate in the ionosphere.

A recent article by Klumpar (1989) concluded that the enhanced
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electron fluxes (beams) encountered along the magnetic field
line are secondary and backscattered electrons from the
auroral ionosphere.

Observations in this thesis also support the topside
ionosphere as the likely source for electron beanms. The
enhanced fluxes are counterstreaming as in Klumpar (1989) and
exhibit temperature, flux, and density consistent with
particles in the topside ionosphere. The beams appear to be
relatively stable through their lifetime, suggesting the
particles that constitute the beam originate in a stable
environment, such as the ionosphere. The beams are highly
field aligned, intimating that the origin of the particles is

not local, but at some distance along the magnetic field line.

B. METHOD OF ACCELERATION
Electron beams are the result of particles being
accelerated along the magnetic field line. The observations
in this thesis suggest these particles originate in the
ionosphere. It is also clear from this observation that
electron beams are formed at or just after a plasma injection
event upon passage of the plasmasheet in the equatorial plane.
This suggests that the acceleration method must form a
connection between these two events.
A common idea in all acceleration theories is that a
potential structure is formed just above the acceleration

region. Tetreault (1991) suggested that double layers formed
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by hole/clump instability along the magnetic field line can
cause a sufficiently large potential drop to form electron
beams. The existence of these double layers has been shown,
but it is still uncertain whether these interspersed double
layers can accumulate the potential necessary to form electron
beans.

A second acceleration theory involves parallel electric
fields. Lin et al (1982) suggested the acceleration method is
oppositely directed electric fields pointing to the spacecraft
along the magnetic field. Mizera (1977) showed that
substantial electric fields along the magnetic field line are
operating over both hemispheres at an altitude of less than
two earth radii. These electric fields produce accelerating
potentials along the magnetic field line at low altitude.

Klumpar (1989) has suggested that plasmasheet electrons
are accelerated downward by a parallel electric field. These
energetic electrons produce secondary and backscattered
electrons in the ionosphere. A diminishing or movement of the
potential structure above the ionosphere would allow these
electrons to escape along the magnetic field line, forming the
beams seen at the equatorial plane. Figure 56 is an
illustration of this theory, and is considered by the author
to be the most viable theory in the formation of electron

beans.
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C. DIFFuUSION PROCESS

Observations in this research indicate the lifetimes of
electron beams are on the order of minutes. This dictates
that a strong diffusion process must take place along the
field line to dissipate the beam, although part of the
evolution may be due to the relative motion of the spacecraft
to the injection front. Figure 57 is the energy versus pitch
angle plot from data collected by detector three on April 17,
1990. An electron beam is seen at a pitch angle of about 180°
and at an energy of 200 eV. Just above the beam are two
concentrations of flux bending toward equatorially trapped
pitch angles. Figure 58 also shows a concentration of flux
bending away from the beam and towards pitch angles of 90° and
270°.

Two contrasting conclusions can be drawn from these
Figures. The first possibility is that electrons at
equatorially trapped pitch angles are 1losing energy and
forming an electron beam along the field line. Observations
shown here indicate that the beam densities require that the
beam originate in the ionosphere, not the equatorially trapped
particle population. The second possibility is that particles
within the beam are gaining energy and diffusing into
neighboring pitch angles. A widely cited diffusion process by
vhistler mode waves, as discussed in Johnstone (1993), provide

the mechanism necessary to support this possibility.
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Vi. CONCLUSION

Electron beams are a common occurrence in the
Magnetosphere. Observations of spectrograms from 11 days
disclosed the presence of over 30 distinct electron beanms.
These beams appear at or just after a plasma injection from
the plasmasheet. The beams are travelling in both directions
along the magnetic field line, indicating counterstreaming.
An interesting observation is that beam temperature is not
dependent on substorm intensity. April 12, 1990 displayed the
highest magnetic activity, but the beam temperature was no
higher than in other days. Beam lifetime, though, did appear
to depend on substorm intensity as beams detected on April 12
lasted up to five times as long as beams detected on other
days.

Beam temperature and density were determined using
Maxwellian approximations. The estimated temperature and
density remained nearly constant through the-beam's lifetime,
and are consistent with particles found in the topside
ionosphere. The topside ionosphere is the suggested choice
for the origin of the particles in the beam. ‘

Klumpar’s (1989) electric field model is consistent with
the observations in this research, and is marked as a viable
solution to the acceleration gquestion. Hada et al’s (1981)

conclusions are also supported by observations in this
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research. Lack of a wave sensor on the spacecraft prevented
determining if a wave-particle interaction caused dispersion
of the beam. Observations in this report suggest particles
within the beam gain energy and are diffused into neighboring
pitch angles. Whistler mode waves are suggested as the cause
of this diffusion.

The three minute time lag between sweeps was detrimental
in the analysis of this data. The number of beams and their
respective 1lifetimes can only be estimated, as their
development and diffusion could have occurred between sweeps.
Improvements in the time resolution would prove helpful in
ansvwering some of these questions. Wwhile it is essential in
plasma physics to collect data at all pitch angles, it would
also prove useful to train a plasma detector along the
magnetic field 1line to continuously collect data. Beam
development and diffusion would be accurately recorded by such
a detector.

The observations made in this report cover a relatively
short period, and conclusions drawn are subject to change by
a more extensive survey. It is recommended that data
collected by the MPA on satellites 1989-046, 1990-095, and

1991-080 be furthered studied to accurately analyze electron

beans.
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Figure 1 The differential number flux of electrons travelling
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Figure 1 Electron Flux versus Energy, Mcllwain (197S5)
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APPENDIX B FIGURES
Magnetosphere

Figure 5.4 Cross section of the magnetosphere showing the prin-
cipal current systems: magnetopause current, cross-tail (or neutraf)
current sheet, ring current, and field aligned currents. Also shown
are the regions of convective and co-rotation plasma flow directions

Figure 4 Cross Section of the Earth’s Magnetosphere
Tascione (1988)
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Figure 9 Energy vs Timg Spectrogram--Field Aligned
42
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Figure 10 Energy VS Time Spectrogram--Perpendicular

43




Voorotes (MM/s)

LANL MPA - 1989-046
Detector 3
14-APR-90 6:40:08

1 - 3270.09 ev 1 - 3270.09 ev
3 30.
20 1
101
0.
=107
_20.
_30- o
-30 o] 30 -30 0 30
v, (Mm/s) Vi (Mm/s)
Log Diffl Energy Flux
‘ 7.5
10000
7.0
1000
&
]
6.5 ]

Energy

100

1
0 6.0

o] 90 180 270 360

0O 90 180 270 360 5.5
Pitch Angle

Pitch Angle

Figure 11 Energy versus Pitch Angle Spectrogram
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Figure 13 Field Aligned Spectrogram for April 16, 1990
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Figure 14 Field Aligned Spectrogran for April 21, 1990
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Figure 15 Energy versus Time Spectrogram, December 10, 1990
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Figure 16 Energy versus Time Spectrogram, April 15, 1990
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Los Alamos National Loboratory Magnetospheric Plasma Analyzer
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Figure 17 Energy versus Time Spectrogram, April 5, 1990
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Los Alamos National Laboratory Magnetospheric Plasma Analyzer
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Figure 19 Energy versus Time Spectrogram for April 19, 1990
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Figure 29 Energy versus Time Spectrogram for April 18, 1990
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Figure 44 Energy versus Pitch Angle--April 12--05:21:08
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Figure 50 Energy versus Pitch Angle--April 12--05:26:52
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Figure 53 Energy versus Pitch Angle--April 12--05:29:44
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Figure S. A representation of a discrete auroral structure (panel A)
and how a displacement of the potential could allow auroral albedo
electrons to be injected into the magnetosphere (panel B).

Figure 56 Acceleration Potential Structure, Klumpar (1989)
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Figure 57 Energy versus Pitch Angle--April 17, 1990
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